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Abstract
Smart agriculture Internet of Things (IoT) is a typical application of IoT and has become popular due to its advantages in
automatic irrigation and fertilization, crop growth monitoring, pest and disease detection, etc. To reduce resource waste,
minimize environmental impact, and maximize crop yield, most smart agricultural applications require to collect and process
agricultural data in real-time. However, the computational and storage resources of the agricultural IoT devices are limited.
To alleviate the computational and storage pressure on agriculture IoT devices and timely process the collected data collected
by IoT devices, the fog node is usually placed at the edge of the agricultural IoT. Nevertheless, the fog node may not be
completely trusted. The agricultural IoT devices’ data stored in the fog node will face the potential risk of privacy leakage. In
this paper, to preserve the privacy of agricultural IoT devices’ data and user query’s result in the fog-based smart agriculture
IoT, we first build the K2-treap, which is used for storing the data collected by agriculture IoT devices and support efficient
range-max query and dynamic update of the data. Then, we design a data encryption and comparison algorithm based
on BGN homomorphic encryption technique and present an efficient and privacy-preserving range-max query in the fog-
based smart agriculture IoT, which can not only securely compare two data based on their ciphertexts but also support the
incremental update directly over ciphertexts. Notably, our comparison technique and range-max queries are run by the fog
node, so there are no interactions between the agricultural IoT devices and the fog node during the comparison and query.
Finally, we conduct a detailed security analysis and performance evaluation. The results show that our proposed scheme can
indeed protect the privacy of the agricultural IoT devices’ data and query results, and the experimental test results prove that
our proposed scheme is efficient.
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1 Introduction

Smart agriculture IoT has become popular due to its advan-
tages in automatic irrigation and fertilization, crop growth
monitoring, and pest detection, etc [1, 2]. It is a typical
application of IoT and is mostly the same as the tra-
ditional IoT in terms of architecture, protocol standards,
wireless communication technology. Differently, to reduce
waste of resources, minimize environmental impact, and
maximize crop yields, most smart agricultural applications
require to collect and process agricultural data in real-
time. Meanwhile, the accurate geographical location and the
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geographical dimension of species are very important,
which is a critical link in the production and circulation of
agricultural products.

With the widespread application of smart agriculture, the
amount of agricultural data perceived by IoT devices will
greatly increase. However, the computational and storage
resources of the IoT devices are limited. To alleviate the
computational and storage pressure on IoT devices and
timely process the collected data, fog nodes are usually
placed at the edge of the agricultural IoT to store data and
process queries over the stored data [3–7]. Nevertheless,
the fog node is at the edge of the agricultural IoT, and
may not be completely trusted. If the data collected by
the IoT device is directly exposed to the fog node, it will
pose a privacy threat to the data [8–14]. These potential
privacy threats may result in an unproductive farming
environment. For example, if the smart agriculture system is
not working correctly, it could make a wrong decision based
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on the wrong data, such as over-fertilizing, or not irrigating
dry land.

Some researches on privacy protection have been con-
ducted in the fields of energy, healthcare, or transportation
[15–19]. However, few studies have focused on privacy
threats in agriculture. To protect the privacy of agriculture
data, the commonly used method is that the IoT devices
first encrypt their collected data and then report them to the
fog node. However, the encryption technique will inevitably
affect data query functions. Among these query functions,
the range-max query is one of the most common queries.
The range-max query is to obtain the maximum data in a
specific region.

For clarity, we give an example of the range-max query
as follows:

Example 1 Suppose there are 4 × 4 agriculture IoT devices
deployed in the whole field to monitor the growth of crops.
Each IoT device is responsible for collecting crop growth
data and reporting the data and its location to the fog node.
And then, the fog node receives 16 triples, as shown in
Fig. 1. For example, (16, 0, 0) represents that the data of the
crop growth collected by the IoT device at location (0, 0) is
16. When the query user wants to know the crop that grows
best in the rectangular range Q = [1, 2] × [1, 2] marked
with a red border in Fig. 1, he/she sends the query range Q

to the fog node and will receive the maximum value 20 of
the location (2, 1) in that range returned by the fog node.

However, the range-max query over the ciphertext data is
more challenging than that over plaintext data. To the best
of our knowledge, existing works focus on either privacy-
preserving max/min query or range query [20–26]. No
previous work has addressed the privacy-preserving range-
max queries in smart agriculture IoT. In response to this
challenge, we present an efficient privacy-preserving range-
max query scheme in fog-based smart agriculture IoT. The
main contributions of this paper are fourfold as follows.

– First, we build the K2-treap which be used to store the
data collected by agriculture IoT devices and support
efficient range-max query and dynamic data update.

 (16,0,0)  (15,0,1)  (5,0,2)  (9,0,3)

 (14,1,0)  (13,1,1)  (4,1,2) (1,1,3)

 (10,2,0)  (20,2,1)  (2,2,2)  ( 21,2,3)

 (19,3,0)  (11,3,1)  (3,3,2) (8,3,3)

Fig. 1 An example of the range-max query

– Second, we design a data encryption and comparison
algorithm based on BGN homomorphic encryption
technique, which can not only securely compare two
data based on their ciphertexts but also support the
incremental updates directly over ciphertexts.

– Third, based on the K2-treap and our data encryption
and comparison algorithm, we present an efficient
privacy-preserving range-max query scheme. Notably,
our comparison technique and range-max queries are
run by the fog node, so there are no interactions between
the agricultural IoT devices and the fog node during the
comparison and query.

– Finally, we conduct a detailed security analysis, and
the results show that the scheme we proposed can
indeed protect privacy. Through performance evalua-
tion, the experimental test results prove that our pro-
posed scheme is efficient.

The rest of this paper is arranged as follows. In Section 2,
we describe our models, namely the system model and
the security model, and the design goals. In Section 3, we
introduce the preliminary. Then, we present our proposed
scheme in Section 4. In Section 5 and Section 6, we conduct
security analysis and performance evaluation respectively.
Some related works are discussed in Section 7. Finally,
we summarize our work and clarify the content of future
research in Section 8.

2 Ourmodels and design goals

In this section, we first describe our models, namely the
system model and the security model, and then propose our
design goals.

2.1 Systemmodel

Our system model with the privacy-preserving range-
max query in the fog-based agricultural IoT is mainly
composed of four types of entities, namely, service provider,
agricultural IoT devices, fog node, and query user, as shown
in Fig. 2.

– Service provider: The service provider is responsible
for the whole system. To remotely monitor crop growth
in the field, The service provider divides the filed evenly
into 2n × 2n equal cells and deploys the agriculture
IoT devices in each cell. Due to the limited storage
space and computational capacity of the IoT devices,
the service provider deploys a fog node at the edge of
the agricultural IoT to help the IoT device complete data
storage and processing. The data stored in the fog node
is available for query from those users authorized by the
service provider.
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Fig. 2 System model
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– Agriculture IoT devices: In the system, there are 2n ×
2n IoT devices, and they are distributed in the whole
field to monitor the growth of the crops. In specific,
the IoT device Ix,y is distributed in the location (x, y)

and responsible for collecting the data Dx,y of the cell
(x, y), where 0 ≤ x, y ≤ 2n − 1 and Dx,y ∈ [0, l].
Let (Dx,y, x, y) denote a triple tuple of the IoT device
Ix,y . Then, the data collected by all IoT devices can be
denoted as D = {(Dx,y, x, y)|0 ≤ x, y ≤ 2n − 1)}.
To prevent the fog node from knowing the collected
data, each Ix,y encrypts the data Dx,y before sending
it to the fog node. Thus, the fog node can receive an
encrypted dataset [[D]] = {([[Dx,y]], x, y) |0 ≤ x, y ≤
2n − 1} from all IoT devices, where [[Dx,y]] denotes the
ciphertext of Dx,y .

– Fog node: When fog node receives encrypted dataset
[[D]] = {([[Dx,y]], x, y) |0 ≤ x, y ≤ 2n−1} from all IoT
devices, it can provide the range-max query service to
query users. Specifically, when the fog node receives a
range-max query request in the form of Q = [x1, x2] ×
[y1, y2], it will search the encrypted dataset and return
the encrypted maximum data, i.e., [[Dmax]], within the
query rectangular range Q = [x1, x2] × [y1, y2], where
Dmax = max{Dx,y |x1 ≤ x ≤ x2; y1 ≤ y ≤ y2}. In
addition, the fog node allows agriculture IoT devices to
dynamically update their data in ciphtexts. For example,
when the agriculture IoT device Ix,y collects a new
incremented dataD′

x,y at location (x, y), and it can send
corresponding encrypted data [[D′

x,y]] to the fog node.
Then, the fog node will calculate [[Dx,y]] · [[D′

x,y]] to
obtain [[Dx,y +D′

x,y]] and use [[Dx,y +D′
x,y]] to update

the value [[Dx,y]] on the location (x, y) node.
– Query user: The user must first register with the

service provider to access the fog node. Then the
service provider will assign a key to the registered user.
Only those users authorized by the service provider

can access the fog node for data queries. When the
query user wants to know the crop that grows best in
the rectangular range Q = [x1, x2] × [y1, y2], he/she
sends the query range Q to the fog node and receives
the maximum value [[Dmax]] in that range and the
corresponding location (xmax, ymax), returned by the
fog node. Finally, The query user uses the key to recover
the Dmax from the encrypted [[Dmax]].

2.2 Security model

In our security model, the service provider is considered
trusted and is responsible for system initialization and
key distribution. For the agriculture IoT devices, they are
considered honest, and always keep in good condition,
i.e., they will follow the protocol sincerely and send the
real encrypted value and the correct location [[D]] =
{([[Dx,y]], x, y)|0 ≤ x, y ≤ 2n − 1} to the fog node.
For the fog node, it is considered honesty-but-curious. That
is, it will comply with the protocol to store or update
the encrypted data [[Dx,y]] at the location (x, y), and run
query algorithm correctly to respond to the authorized user’s
range-max query. However, it may be curious about some
private information, such as the plaintext of values from
agriculture IoT devices and the corresponding query results
of the authorized user. For the query users, they are honest,
i.e., they will honestly comply with the protocol to submit
the range-max queries. Besides, we assume that there is
no collusion between query users and the fog node. This
assumption is reasonable because the penalty of collusion
for the involving fog node is very high, including losing the
trust of users and being prosecuted.

Of course, there may be active attacks such as damage to
IoT devices. Since we are focusing on protecting privacy in
this paper, the active attacks are no longer within the scope
of this article, and it will be our work in the future.
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2.3 Design goals

Based on the system model described in Section 2.1 and
the security model described in Section 2.2, we present an
efficient and privacy-preserving range-max query scheme.
In particular, the following two goals should be achieved.

– Privacy protection: Privacy protection is the basic
requirement of our paper. That is to say, the data
collected by IoT devices and the corresponding query
results of query users should be kept confidential from
the fog node.

– Dynamic update: In addition to privacy protection
requirements, the proposed scheme should also support
the dynamic update of IoT devices’ data in the
ciphertext. Specifically, when the data collected by
IoT devices Ix,y changes, the proposed scheme
should support the fog node to dynamically update
corresponding encrypted data [[Dx,y]] stored in it.

3 Preliminary

In this section, we will outline some knowledge related to
our proposed scheme, namely the bilinear pairing with com-
posite order and the BGN homomorphic encryption[27].

3.1 Bilinear pairing with composite order

Let N =pq, where p, q are two different large prime num-
bers of the same length. G and GT are two multiplicative
cyclic groups with composite order N . The group can be
instantiated by the elliptic curve addition group. The bilin-
ear map can be computed in polynomial time. We assume
that the discrete logarithm problems in both G and GT are
hard.

If the map e : G×G → GT has the following properties,
this map is called bilinear map with composite order.

– Bilinearity: For any (g, h) ∈ G×G and a, b ∈ ZN , we
have e(ga, hb) = e(g, h)ab ;

– Non-degeneracy: There is a generator g ∈ G, so that
e(g, g) is with the order N in GT . At the same time,
e(g, g) is a generator of GT .

– Computability: For all (g, h) ∈ G, there is an
algorithm that can efficiently compute e(g, h) ∈ GT .

Definition 1 Composite Bilinear Generator
Let CGen be a composite bilinear parameter generator,

and κ is a security parameter. According to the following
process, the CGen can output a 5-tuple (N,G,GT , g, e) in
probability polynomial time.

(1) Let N = pq, where p, q are two randomly generated
κ-bit prime numbers.

(2) Generate two groups G, GT with order N , and select
a generator g for G. Then, construct a bilinear map
e : G × G → GT as mentioned above.

(3) Output the parameters (N,G,GT , g, e).

Let g be a generator of G, then g = gq ∈ G can
construct the subgroupGp = {g0, g1, · · · , gp−1} with order
p, and g′ = gp ∈ G can construct the subgroup Gq =
{g′0, g′1, · · · , g′q−1} with order q in G.

Given a tuple (N,G,GT , e, h), determining whether h

is in the subgroup Gq is called the SubGroup Decision
(SGD) Problem, where h ∈ G or h ∈ Gq . Since the SGD
problem is hard [28], it can be ensured that the following
BGN homomorphic encryption is safe.

3.2 BGN Homomorphic encryption

The BGN is a popular homomorphic public-key encryption
that was originally proposed by Boneh, Goh, and Nissim in
[27]. It includes three phases: key generation, encryption,
and decryption.

– Key Generation: Let κ be the security parameter,
the generator CGen outputs a 5-tuple (N,G,GT , g, e),
where the 5 parameters are described as above. Let
h = gq , and it can construct a subgroup ofG of order p.
That is, h is a random generator. Therefore, the public
key is pk = (N,G,GT , g, e, h), and the private key is
sk = p.

– Encryption: Assuming that the message space is S =
{0, 1, · · · , T }, where T � q. Use C = E(m) =
gmhr ∈ G to encrypt a message m ∈ S, where r ∈ ZN

is a random number.
– Decryption: Given a ciphertext C = E(m), the

plaintext m can be recovered in the following two steps.

(1) Compute Cp = (gmhr)p = (gp)m.
(2) Let ĝ = gp, recover m from (gp)m by

computing the discrete log of Cp base ĝ with
the Pollard’s lambda method [29].

Based on the SubGroup Decision(SGD) P roblem

assumption, BGN is provably secure against chosen-
plaintext attacks. For the detailed security analysis please
refer to [27]. BGN encryption has the following homomor-
phic properties.

– Addition: Given E(m1) and E(m2), we have E(m1) ·
E(m2) → E(m1 + m2).

– Multiplication-I: Given E(m1) and m2, we have
E(m1)

m2 → E(m1 · m2).
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– Self-Blinding: Given E(m1) and hr2 , we have E(m1) ·
hr2 → E(m1).

– Multiplication-II: Given E(m1) and E(m2), we have
e(E(m1), E(m2)) → E′(m1 · m2) ∈ GT , where E′()
represents a ciphertext in GT .

4 Our proposed scheme

In this section, we present our efficient and privacy-
preserving range-max query scheme in fog-based agricul-
tural IoT. Before going into details, we first introduce a tree
structure, called K2-treap, and a privacy-preserving encryp-
tion scheme, a privacy-preserving comparison protocol,
which are several important components of our proposed
scheme.

4.1 The K2-treap

The K2-treap is a quadtree structure and also has the max
heap property. Specifically, each internal node in the K2-
treap has four children, and the value of child nodes is less
than that of their parent node. With the max heap property,
the K2-treap can effectively support the range-max query.
In the following, we will introduce three algorithms about
the K2-treap including tree building, dynamic update, and
range-max query.

4.1.1 Tree building

Suppose that the dataset D is a location-based dataset, and
it is in the form of D = {(Dx,y, x, y)|0 ≤ x, y ≤ 2n − 1)},
where (x, y) is a location and Dx,y is the value in (x, y),
as shown in Fig. 3. Based on the dataset D, we can build a
K2-treap KT from bottom to top as follows.

• Step 1: Build the leaf nodes of the K2-treap KT .
Specifically, for each value Dx,y ∈ D, build a leaf node
(Dx,y, x, y). Thus, the side length of the area covered
by each leaf node can be denoted as L = 20.

• Step 2: Build the higher level of the K2-treap KT

based on the leaf nodes. As shown in Fig. 3, from the
upper-left node of the whole area, we can gradually
merge four leaf nodes in a square into an internal
node. In the internal node, it contains 7 attributes
{AID,CID, c1, c2, c3, c4, p}. AID is used to describe
the area that is covered by the current node. The area is a
square and it can be denoted as AID = (xlef t , ytop, L),
where (xlef t , ytop) is the upper-left location of the area,
and L is the side length of the area. In this level, since
there are 2 × 2 values in the area of the square, the
side length of the area is L = 21. CID is used to
describe the max value and its corresponding location
of this area. It can be denoted as CID = (data, x, y),
where data is the max value in this square, i.e., data =
max{Dx,y |x ∈ [xlef t , xlef t + L], y ∈ [ytop, ytop + L]},
and (x, y) is the location of data. For c1, c2, c3, c4, they
are pointers to the children of the current internal node.
Without loss of generality, we assume that c1, c2, c3, c4
respectively point to the upper-left node, upper-right
node, lower-left node, and lower-right node of this area.
Meanwhile, the internal node has a pointer p that points
to its parent, and it will be assigned when the next
higher level is built. When constructing this level, we let
the parent pointers of the leaf nodes in this area point to
the current internal node.

• Step 3: Build the next higher level of the K2-treap
KT based on the internal nodes constructed in step 2.
From the upper-leaf node, gradually merge four internal
nodes in a square into an internal node and assign the
attributes of the internal node with the same method

Fig. 3 The K2-treap structure
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in step 2. Differently, in this level, the area covered by
each internal node contains 22 × 22 values, the side
length of the square is L = 22.

• Step 4: Repeat step 3 until there is only one merged
node, i.e., the root node. After this step, a K2-treap KT

is constructed.

Example 2 There is a dataset with 4 × 4 elements. We can
use the dataset to build the K2-treap KT , as shown in Fig. 4.
The building process of the KT is as follows:

• Step 1: Build the leaf nodes of the KT . Each element of
the dataset can be used to build the leaf node of the KT .
At the same time, the side length of the area is L = 20.

• Step 2: Build the higher level of the KT based on the
leaf nodes. From the upper-left node of the whole area,
we gradually merge four leaf nodes in a square into
an internal node, and obtain 2 × 2 internal nodes. The
value of each internal node is the maximum data of
the current square. The CID of the four internal nodes
are (16, 0, 0), (9, 0, 3), (20, 2, 1), (21, 2, 3).The AID
of the four internal nodes are (0, 0, L = 21), (0, 2, L =
21), (2, 0, L = 21), (2, 2, L = 21). Each internal
node’s four child-pointers c1, c2, c3, c4 respectively
point to the upper-left node, upper-right node, lower-
left node, and lower-right node of this area. At the same
time, the side length of the area is L = 21.

• Step 3: Build the next higher level of the KT based
on the internal nodes constructed in Step 2, we merge
the four internal nodes in a square. There is only one
merged node, which is the root node of the KT . The
AID of the root node is (0, 0, L = 22), the CID
of the root node is (21, 2, 3). In this case, we can

get the maximum data 21 of the whole dataset and
the corresponding location (2, 3) from the CID of the
root node.

4.1.2 Range-max Query

When the K2-treap KT is built, it can efficiently support
range-max query. In specific, given a query range Q =
[x1, x2] × [y1, y2], we can search KT to find out the
maximum value among all values within the range Q, i.e.,
Dmax = max{Dx,y |(x, y) ∈ Q}. The query process can be
performed as the following steps.

Fig. 4 An example of K2-treap
building
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• Step 1: Initialize a stack S = ∅, Dmax = 0, (xmax,

ymax) = (0, 0). The stack will be used to store the
selected nodes whose AID intersects with Q. Dmax

represents the maximum value in the range Q, (xmax,

ymax) is the location where the maximum value locates
in.

• Step 2: Push the root node of the KT into the stack.
• Step 3: If the stack is not empty, pop a node from

the stack, and denote it by N . If the location (x, y)

of the N .CID is in the query range Q and the data
N .CID.data is larger than Dmax , then update Dmax and
(xmax, ymax). If the location (x, y) of the node N .CID
is not in the query range Q, we select its child-nodes
whose AID has an intersection with Q and push them
into the stack S.

• Step 4: Repeat Step 3, until the stack is empty.

Note that, the query area Q in the algorithm is a regular
rectangle, the algorithm can query the maximum value of
any irregular region, as any irregular region can ultimately
be made up of multiple cells.

4.1.3 Dynamic update

When the value Dx,y of the node N at the location (x, y)

in the K2-treap KT has changed, the incremented value is
D′

x,y . TheKT can be dynamically updated by comparing the
value of the node with the value of its parent. The dynamical
update process of the KT is as follows:

• Step 1: Jump from the root node to the corresponding
location of the node N in the leaf node according to the
(x, y);

• Step 2: Update the data Dx,y of the node’s N .CID with
new data Dx,y + D′

x,y .
• Step 3: Compare the data N .CID.data with the

data N .p.CID.data , If the data N .CID.data >

N .p.CID.data, then update theN .p.CID.data with the
N .CID.data, and use N to represent the parent node.

• Step 4: Repeat Step 3, until the node is root or
N .CID.data ≤ N .p.CID.data.

4.2 The data encryption and comparison technique

In this subsection, we present data encryption and com-
parison technique, which can achieve data encryption and
encrypted data comparison. This technique is based on
BGN homomorphic encryption technique, and it involves
three parties, i.e., data encryptor, data decryptor, and data
comparator. The data encryptor is responsible for encrypt-
ing the data. The data comparator can achieve encrypted
data comparison. The decryptor can recover plaintexts from
encrypted data. In specific, our data encryption and data
comparison protocol technique consist of four algorithms,

i.e., key generation, encryption, decryption, and data com-
parison.

– Key generation: Let κ be the security parameter,
the key generation algorithm first outputs a 5-tuple
(N,G,GT , g, e) by running CGen(κ), where N =
pq. Then, let h = gq , the BGN public key is
pk = (N,G,GT , g, e, h), and the private key is
sk = p. Further, the algorithm selects a hash
function H : {0, 1}∗ → ZN , and also selects
two secret keys s, t ∈ ZN . In addition, to enable
the data comparator to compare encrypted data, the
key generation algorithm generates a set of hash
values H = {H(e(g, g)pstx)|x ∈ (0, l]}. Finally, the
key generation algorithm respectively distributes gs ,
(s−1p), and (gpt ,H) to the encryptor, decryptor, and
data comparator. Meanwhile, it publishes the public key
pk, and hash function H .

– Encryption: Given a plaintext m ∈ (0, l], the data
encryptor can encrypt m as

[[m]] = E(m) = (gs)m · hr (1)

where r ∈ ZN is a random number.
– Decryption: Given a ciphertext [[m]] = E(m), the

decryptor first computes

[[m]]s−1p = ((gs)m · hr)s
−1p = (gp)m. (2)

Then, the decryptor can recover m from (gp)m by
computing the discrete log of (gp)m base gp with the
Pollard’s lambda method [29].

• Data comparison: Given two encrypted data [[m1]]
and [[m2]], the data comparator can compare them.
Specifically, the data comparator first computes

X = e

( [[m1]]
[[m2]] , g

pt

)
= e(g, g)pst (m1−m2) (3)
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Then, if X = 1GT
, we can directly have m1 = m2. If

H(X) ∈ H, m1 > m2. Otherwise, m1 < m2.

Correctness. The correctness of the data encryption and
comparison technique is follows:

Assume [[m1]] and [[m2]] are two encrypted values,
[[m1]]
[[m2]] = (gs)m1 · hr1

(gs)m2 · hr2

= gs(m1−m2) · hr1−r2

Then, we have

X = e

( [[m1]]
[[m2]] , g

pt

)
= e(gs(m1−m2) · hr1−r2 , gpt )

= e(g, g)pst (m1−m2) · e(h, g)pt(r1−r2)

= e(g, g)pst (m1−m2) · 1 = e(g, g)pst (m1−m2)

Clearly, if m1 − m2 > 0, i.e. m1 > m2, then m1 − m2 ∈
(0, l] and we know H(X) will appear in H. if X = 1GT

,
we can directly have m1 = m2. If m1 < m2, H(Xi)

will not appear in H. Therefore, the correctness of the data
encryption and comparison technique holds.

4.3 The details of our scheme

In this subsection, we present our privacy-preserving range-
max query scheme, which contains four phases, i.e., system
initialization, data transmission, range-max query, and
dynamic update.

4.3.1 System initialization

In the system initialization, the service provider is respon-
sible for bootstrapping the whole scheme.As the key gen-
eration algorithm in Section 4.2, the service provider gen-
erates the public pk and the private key sk, where pk =
(N,G,GT , e, g, h), sk = p. Further, the service provider
chooses a cryptographic hash function H : {0, 1}∗ → ZN ,
and two secret keys s, t ∈ ZN . Finally, the service provider
keeps (p, s, t) secretly, respectively distributes gs , (s−1p),
and (gpt ,H) to the IoT devices, the authorized query use,
and fog node. Meanwhile, it publishes the public key pk,
and hash function H . The hash function is constructed as
described in Section 4.2.

4.3.2 Data transmission

In this phase, The IoT device transmits its data to the fog
node as follows:

• Step 1: IoT device Ix,y uses gs and a random number
rx,y ∈ ZN to encrypt Dx,y as

[[Dx,y]] = E(Dx,y) = (gs)Dx,y · hrx,y (4)

where rx,y ∈ ZN, 0 ≤ x, y ≤ 2n − 1, Dx,y ∈ D.
• Step 2: IoT device Ix,y sends the encrypted data [[Dx,y]]

and corresponding location (x, y) to the fog node.
• Step 3: From all IoT devices, the fog node receives an

encrypted dataset [[D]] = {([[Dx,y]], x, y)|0 ≤ x, y ≤
2n − 1)}. Based on the encrypted dataset, the fog node
builds a K2-treap KT as described in Section 4.1.1.
Since the fog node cannot access the plaintext datasetD,
it will face a challenge, that is how to compare the sizes
of these encrypted data. For solving the challenge, the
fog node can run privacy-preserving data comparisons
described in Section 4.2. In this case, the node in the
KT contains 7 attributes {AID,CID, c1, c2, c3, c4, p} as
described in Section 4.1.1. The only difference is that
the data of the CID is encrypted.

4.3.3 Range-max query

When the KT is built by fog node, it can efficiently support
range-max query over the encrypted data as follows:

• Step 1: If an authorized query user wants to know
which crops grow best in a range, it needs to send the
query range Q to the fog node, where Q = [x1, x2]×
[y1, y2] .

• Step 2: The fog node runs the range-max query
algorithm as described in Section 4.1. Due to the data
of the node’s CID in the KT is encrypted, it is a
challenge for the fog node to compare [[Dmax]] <

[[N .CID.data]]. In this case, the fog node needs to
run privacy-preserving data comparisons described in
Section 4.2, then returns the maximum encrypted
value[[Dmax]]and corresponding location xmax, ymax to
the authorized query user. i.e., [[Dmax]] = max{[[Dx,y]]|
(x, y) ∈ Q}.

• Step 3: Once the query user receives the value[[Dmax]]
and location xmax, ymax , he/she can use the key
(s−1p) assigned by the service provider to perform the
following calculation.

([[Dmax]])s−1p = ((gs)Dmax · hr)(s
−1p) = (gp)Dmax

Let ĝ = gp. It can recover Dmax from [[Dmax]] by
computing the discrete log of ([[Dmax]])s−1p base ĝ with the
Pollard’s lambda method [29].

4.3.4 Dynamic update

When the agriculture IoT device monitors that the value at
the location (x, y) has changed, the incremented value is
D′

x,y . The K
2-treap KT can be dynamically updated by fog

node as follows:

• Step 1: IoT device Ix,y first encrypts the value D′
x,y

using the data encryption algorithm as described in
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Section 4.2, then sends the ciphertext [[D′
x,y]] and the

corresponding location (x, y) to fog node.
• Step 2: When the fog node receives the encrypted data

[[D′
x,y]] and location x, y, it first computes [[Dx,y]] ·

[[D′
x,y]], then obtains the encrypted data [[Dx,y +

D′
x,y]] according to the additional property of the BGN

homomorphic encryption.
• Step 3: Since the fog node only knows the encrypted

data of the node CID, it will face a challenge, that is how
to compare [[N .CID.data]] > [[N .p.CID.data]], where
N represents the node with the value [[Dx,y + D′

x,y]]
at the location (x, y). For solving the challenge, the
fog node can run privacy-preserving data comparisons
described in Section 4.2 .

• Step 4: Repeat Step 3, until the node is root or
[[N .CID.data]] ≤ [[N .p.CID.data]].

5 Security analysis

In this section, we will conduct the security analysis of
our proposed privacy-preserving range-max query scheme.
Since the privacy-preserving data encryption and privacy-
preserving comparison technique are two important compo-
nents of our scheme, we first analyze their security. After
that, we conduct the security analysis of our proposed scheme.

5.1 Security of data encryption and comparison
technique

Our data encryption and comparison technique consist of
data encryption and data comparison algorithm. In the
following, we show that both of them are secure.

For our data encryption technique, the data is encrypted
as [[m]] = E(m) = (gs)m · hr . It is very similar to
the BGN homomorphic encryption scheme, in which a
data m is encrypted as [[m]] = E(m) = (g)m · hr .
Since BGN encryption scheme is semantically secure,
our encryption technique is also semantically secure.
Meanwhile, compared with BGN encryption technique, our
encryption technique involves an additional secret key s, so
our scheme is even more secure. Thus, our data encryption
technique is secure and it is hard to recover the plaintext m

without the private key s−1p.
For our data comparison algorithm, given two encrypted

data [[m1]] = (gs)m1 · hr , [[m2]] = (gs)m2 · hr , the data

comparator can use the key gpt to computeX=e
( [[m1]][[m2]] , g

pt
)

= e(g, g)pst (m1−m2). Then, the data comparator can deduce
the comparison relationship between m1 and m2 by com-
puting H(X) and judging whether H(X) is in the H. If
X = 1GT

, the data comparator can directly have m1 =
m2. Actually, the data comparison algorithm pursues the
comparison of data on basis of protecting privacy, so the
comparison relationship cannot be regarded as private infor-
mation. However, the data comparator cannot have access
to the plaintext of m1 − m2. This is because the data com-
parator has no idea on the secret key s, it is hard for it to
recover the plaintext m1−m2 from e(g, g)pst (m1−m2). Thus,
the data comparison algorithm is secure.

5.2 Security of our proposed scheme

In our security model described in Section 2.2, we assume
that there is no collusion between the fog node and the
query user. That is the query user will not share the key
s−1p assigned by the service provider with the fog node.
Based on this assumption, we will confirm that our proposed
scheme can achieve the privacy-preserving properties, i.e.
(1) The dataset D is privacy-preserving; (2) The query
result Dmax is privacy-preserving; (3) The updated data is
privacy-preserving.

– The datasetD is privacy-preserving: In our scheme, IoT
device Ix,y first encrypts data as [[Dx,y]] = (gs)Dx,y ·
hrx,y , 0 ≤ x, y ≤ 2n − 1, and then sends [[Dx,y]] to the
fog node. Thus, the fog node can access an encrypted
dataset [[D]]. Since our data encryption technique is
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semantically secure, the fog node can not recover Dx,y

from [[Dx,y]] of the encrypted dataset [[D]] without
knowing the decryption key s−1p. As a result, the
dataset D is privacy-preserving.

– The query result Dmax is privacy-preserving: In our
scheme, given a query range Q = [x1, x2] × [y1, y2],
the fog node can find the maximum encrypted value
[[Dmax]] in this query range and return it. Because
Dmax ∈ D is encrypted like [[Dmax]] = (gs)Dmax · hrx,y ,
and our data encryption and comparison algorithm is
secure, the fog node can not recover the Dmax from
[[Dmax]] without the decryption key s−1p. The Dmax in
range Q is privacy-preserving.

– The updated data is privacy-preserving: In our scheme,
once the fog node receives a new encrypted incremented
value [[D′

x,y]] at location (x, y) from the I (x, y), the
fog node first computes [[Dx,y]] · [[D′

x,y]] to obtain the
encrypted data [[Dx,y +D′

x,y]], then uses [[D′
x,y +Dx,y]]

to update the original value [[Dx,y]] at the location (x, y)

in the K2-treap. Because D′
x,y ∈ D is encrypted like

[[D′
x,y]] = (gs)D

′
x,y · hrx,y , and our data encryption and

comparison algorithm is secure, the fog node can not
recover the D′

x,y from [[D′
x,y[] without the decryption

key s−1p. Therefore, the updated data is secret to the
fog node.

6 Performance evaluation

In this section, we evaluate the performance of the range-
max query scheme by using the time for the fog node
to complete the update of K2 -treap and the time of the
range-max query.

To the best of our knowledge, existing works either focus
on privacy-preserving range query, top-k query, or max query.
No previous work has addressed the privacy-preserving range-
max queries in smart agriculture IoT. Therefore we compare
our proposed scheme(w/ K2-treap) with the scheme without
integrating the K2-treap(w/o K2-treap).

6.1 Experimental setting

We use JAVA to implement our scheme, and run our experi-
ments on a machine with Intel(R) Xeon(R) CPU@2.30GHz,
10GB RAM, and Debian 9 operating system. For our scheme,
the corresponding parameters are as follows:

– The encryption algorithm’s security parameter κ is 512
bits.

– The length of the p, q is 512-bit, and the length of N is
1024.

– The numbers of the agriculture IoT devices are 2n ×2n,
where n = 3, 4, 5, 6, 7, 8.

– The fog node receives an encrypted dataset [[D]] =
{([[Dx,y]], x, y)|0 ≤ x, y ≤ 2n − 1} from all IoT
devices, where Dx,y ∈ [0, l], l = 500.

We run our experiments 22n−1 K2-treap updates and 50
range-max queries.

6.2 Experimental results

6.2.1 Update time

As the scheme without integrating K2-treap does not involve
an update procedure, we mainly focus on the update time
for our proposed scheme.

In our experiments, the update of K2-treap is performed
by randomly generating the location (x, y) and the incre-
mented value 0 ≤ D′

x,y ≤ 10, where 0 ≤ x, y ≤ 2n − 1,

n = 3, 4, 5, 6, 7, 8. After running 22n−1 times of updating
the K2-treap, the statistical results of the updating time is
shown in Fig. 5. In specific, the dots linked by the green
lines represent the average update times for varied n, and
each violin plot in the diagram has the following properties:

– The bottom and top of the thick black line represent
the first and third quartile of the data, respectively.
The white circle inside each violin denotes the second
quartile of data.

– The lowest (resp. highest) datum within the 1.5 interquar-
tile range (IQR) of the first (resp. third) quartile is
marked by the lower (resp. upper) whisker.

– The grey shades show the probability density of the data
at different values.

For example, when n=3, there are 2n × 2n = 64 data
collected by the IoT devices. The K2-treap has 64 leaf
nodes and its depth is 4, and we run 22n−1 = 32 updates
on the K2-treap. Experimental results show that among 32
updates, a quarter of the updates (8 times) can be completed
in 551.5ms, half of them (16 times) can be completed in
706.4ms, and three-quarters (24 times) in 987.9ms finish.
In Fig. 5, the bottom, white circle, and top of the black
box are used to represent them. Meanwhile, the green point
represents the average time consumption of 32 updates,
which is 759.7 ms.

The other points linked by the green lines represent
the average update time when n is 4,5,6,7, and 8. They
are 722.9ms, 763.8ms, 763.4ms, 538.8ms, and 435.9ms,
respectively. The average time consumption for updating the
K2-treap is less than 800 ms.

As shown in Fig. 5, although in rare cases the update
time is relatively long. This is mainly because that, the
upper bound of update time is linear to the depth of the K2-
treap, which will increase with n. However, as n increases,
the possibility of updating the same cell decreases, and
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Fig. 5 Update time of K2-treap.
In this figure, each gray shade
indicates the update times’
distribution for the
corresponding value of n, which
shows that the upper bound of
the update time increases with n.
However, the green line shows
the average update time, which
decreases as n increases

the frequency of updates involving operating internal nodes
decreases. Therefore, the average time consumption of the
update phase decreases as n increases.

6.2.2 Query time

To compare the query performance, we test the average time
consumption for the two schemes to handle queries of varied
areas ranging from 0.1× 22n to 1.2× 22n, and for each area
of the query range, we randomly generate 50 queries. The
average time consumption for maximum queries in different
query ranges of the two schemes are shown in Fig. 6.

In the scheme without integrating K2-treap, as the query
range expands, the number of IoT devices within the
query range also increases. To find the maximum value
in the query range, the compared data will also increase.
Therefore, the query time of the scheme will also increase.
The query time of the scheme is related to the numbers
of data collected by the IoT devices in the query range,
therefore the average time consumption of the scheme is
linear to the area of the query range.

However, in our scheme(w/ K2-treap), each internal node
in the K2-treap has four children, and the value of child
nodes is less than that of their parent node. With the
max heap property, the query time of our scheme will not
increase with the increase of the query range. Specifically,
when the query range covers the whole field, the data
of the root of the K2-treap is the maximum value in the
query range. The query time of our scheme is a very
small constant. Therefore our scheme is much better than
the scheme without integrating the K2-treap(w/o K2-treap).
The average time consumption for our proposed scheme
reduces as the query range’s area increases and is less than
10 seconds.

7 Related works

To the best of our knowledge, existing works focus on either
privacy-preserving max/min query [20–22] or range query
[23–26], and have little work on privacy-preserving range-
max queries in smart agriculture IoT. In the following, we
introduce some related works that are close to our work.

Some privacy-preserving max/min query schemes [20–
22] have been proposed. Yao et al. [20] are the first to
consider the privacy max/min query in two-tiered sensor
networks. They use the prefix membership verification
approach to encode sensor data. The proposed scheme
can not only ensure the storage node to correctly process
max/min queries over encoded data but also prevent the
storage node from knowing the actual values. Since all
sensors in this scheme share the same key, the data
privacy could be leaked if a sensor is compromised. Thus,
the security of this scheme is weak. Samanthula et al.
[21] adopted the GM (Shafi Goldwasser, Silvio Micali)
probabilistic encryption to protect data privacy even if a
few sensors are compromised. Since every bit of the data
collected by a sensor is encrypted into a vector whose
length is equal to the domain size of the collected data,
the network communication cost may become very large if
the domain size of the collected data is large. Thus, this
scheme is communication inefficient. Dai et al. [22] are the
first to discuss privacy-preserving max/min query (PMQ)
processing for the WSN-as-a-Service environment based
on the secure multi-party computation. The communication
cost of their PMQ scheme is lower than that of the
schemes in [20, 21]. Nevertheless, all schemes above have
multiple rounds of interactions between sensors during
query processing. In addition, these schemes focus on
obtaining the max/min value of all encrypted data in the
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Fig. 6 Average time
consumption for range-max
queries of different query
ranges. In this figure, the average
query time of our proposed
scheme decreases as the area of
the query range increases, while
that of the scheme without
integrating the K2-treap is linear
to the query range’s area

whole region, and none of them consider the range query in
a specific region.

Some privacy-preserving range query schemes [23–
26] have been proposed. The privacy-preserving range
query is to obtain the data in a specific region while
preserving the privacy of the query range and query result.
Agrawal et al. [23] first presented the order-preserving
encryption(OPE) technique that supports range queries over
encrypted data. Boldyreva et al. [24] gave an efficient OPE
implementation for a range query protocol. However, since
the OPE technique essentially leaks the order information
of the data, this scheme discloses the frequency of each
different value in the dataset and is vulnerable to statistical
attacks. Besides, this scheme cannot support the incremental
update directly over ciphertexts. Lu [25] and Mahdikhani
et al. [26] respectively proposed a new privacy-preserving
range query scheme based on the homomorphic encryption
technique. Both of the proposed schemes in [25, 26]
focus on the scenario of the fog-enhanced IoT and can
achieve range queries while preserving the privacy of IoT
devices’ plaintext data and users’ query range. However,
these schemes involve many interactions between the
fog node and the IoT devices during the query process.
Lu [25] reorganized range query by using range query
expression, decomposition, and composition technique to
achieve O(

√
n) communication. Mahdikhani et al. [26]

proposed a novel range decomposition technique to compile
the range query to achieve O(log3 n) communication.

Different from the above existing schemes, we focus
on the range-max query, and propose an efficient and
privacy-preserving range-max query scheme in fog-based
smart agriculture IoT, which can obtain the max/min
data of any specific region (including the whole region).
To protect the security of the proposed scheme, we
design data encryption and comparison technique based

on BGN homomorphic encryption technique. The adoption
of the BGN homomorphic encryption technique not only
strengthens the security of the proposed scheme but also
enables the proposed scheme to support the incremental
updates over ciphertexts. Meanwhile, our range-max query
scheme is a non-interactive scheme, so there are no
interactions between the IoT devices and the fog node
during the query process.

8 Conclusion

In this paper, we have focused on the range-max query
and proposed an efficient and privacy-preserving range-max
query in fog-based smart agriculture IoT. Specifically, we
first build the K2-treap, which is used for storing the data
collected by agriculture IoT devices and support efficient
range-max query and dynamic update of the data. Then,
we design a data encryption and comparison algorithm
based on BGN homomorphic encryption technique and
present an efficient and privacy-preserving range-max query
in the fog-based smart agriculture IoT, which can not
only securely compare two data based on their ciphertexts
but also support the incremental update directly over
ciphertexts. Notably, our comparison technique and range-
max queries are run by the fog node, so there are no
interactions between the agricultural IoT devices and the fog
node during the comparison and query. Finally, we conduct
a detailed security analysis and performance evaluation. The
results show that our proposed scheme can indeed protect
the privacy of the agricultural IoT devices’ data and query
results, and the experimental test results prove that our
proposed scheme is efficient.

In future work, we will continue to focus on the privacy
protection of smart agricultural IoT applications and further
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explore some general and efficient privacy-preserving range
query solutions.
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